Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in glaucoma from 2013 to 2022
Author:
Corresponding Author:

Jun-Guo Duan. Ineye Hospital of Chengdu University of TCM; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu 610072, Sichuan Province, China. duanjg@cdutcm.edu.cn

Fund Project:

Supported by National Natural Science Foundation of China (No.82074335).

  • Article
  • | |
  • Metrics
  • |
  • Reference [55]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    AIM: To conduct a bibliometric analysis of research on artificial intelligence (AI) in the field of glaucoma to gain a comprehensive understanding of the current state of research and identify potential new directions for future studies. METHODS: Relevant articles on the application of AI in the field of glaucoma from the Web of Science Core Collection were retrieved, covering the period from January 1, 2013, to December 31, 2022. In order to assess the contributions and co-occurrence relationships among different countries/regions, institutions, authors, and journals, CiteSpace and VOSviewer software were employed and the research hotspots and future trends within the field were identified. RESULTS: A total of 750 English articles published between 2013 and 2022 were collected, and the number of publications exhibited an overall increasing trend. The majority of the articles were from China, followed by the United States and India. National University of Singapore, Chinese Academy of Sciences, and Sun Yat-sen University made significant contributions to the published works. Weinreb RN and Fu HZ ranked first among authors and cited authors. American Journal of Ophthalmology is the most impactful academic journal in the field of AI application in glaucoma. The disciplinary scope of this field includes ophthalmology, computer science, mathematics, molecular biology, genetics, and other related disciplines. The clustering and identification of keyword nodes in the co-occurrence network reveal the evolving landscape of AI application in the field of glaucoma. Initially, the hot topics in this field were primarily “segmentation”, “classification” and “diagnosis”. However, in recent years, the focus has shifted to “deep learning”, “convolutional neural network” and “artificial intelligence”. CONCLUSION: With the rapid development of AI technology, scholars have shown increasing interest in its application in the field of glaucoma. Moreover, the application of AI in assisting treatment and predicting prognosis in glaucoma may become a future research hotspot. However, the reliability and interpretability of AI data remain pressing issues that require resolution.

    Reference
    1 Feng KM, Tsung TH, Chen YH, Lu DW. The role of retinal ganglion cell structure and function in glaucoma. Cells 2023;12(24):2797.
    2 Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis. Ophthalmology 2014;121(11):2081-2090.
    3 Varma R, Mei YL, Francis BA, Nguyen BB, Deneen J, Wilson MR, Azen SP, Los Angeles Latino Eye Study Group. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study. Ophthalmology 2004;111(8):1439-1448.
    4 Friedman DS, Wolfs RC, O’Colmain BJ, Klein BE, Taylor HR, West S, Leske MC, Mitchell P, Congdon N, Kempen J, Eye Diseases Prevalence Research Group. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122(4):532-538.
    5 Malihi M, Moura Filho ER, Hodge DO, Sit AJ. Long-term trends in glaucoma-related blindness in Olmsted County, Minnesota. Ophthalmology 2014;121(1):134-141.
    6 Wu J, Fang H, Li F, et al. GAMMA challenge: Glaucoma grading from multi-modality images. Med Image Anal 2023;90:102938.
    7 GBD Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021;9(2):e144-e160.
    8 Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet 2023;402(10414):1788-1801.
    9 Lim YJ, Bang JW, Weinreb RN, Zangwill LM, Suh MH. Temporal optic disc microvasculature dropout in glaucoma. Invest Ophthalmol Vis Sci 2023;64(11):6.
    10 Prager AJ, Kang JM, Tanna AP. Advances in perimetry for glaucoma. Curr Opin Ophthalmol 2021;32(2):92-97.
    11 Chauhan BC. Understanding the increasing role of optical coherence tomography in glaucoma diagnostics and disease progression. JAMA Ophthalmol 2023;141(9):890.
    12 Jampel HD, Friedman D, Quigley H, Vitale S, Miller R, Knezevich F, Ding YL. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am J Ophthalmol 2009;147(1):39-44.e1.
    13 Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 2004;45(9):3152.
    14 Liu Y, Simavli H, Que CJ, Rizzo JL, Tsikata E, Maurer R, Chen TC. Patient characteristics associated with artifacts in Spectralis optical coherence tomography imaging of the retinal nerve fiber layer in glaucoma. Am J Ophthalmol 2015;159(3):565-576.e2.
    15 Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: vision beyond 2020. Lancet Glob Health 2021;9(4):e489-e551.
    16 Burton RJ, Albur M, Eberl M, Cuff SM. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med Inform Decis Mak 2019;19(1):171.
    17 Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 2019;119(18):10520-10594.
    18 Szeskin A, Yehuda R, Shmueli O, Levy J, Joskowicz L. A column-based deep learning method for the detection and quantification of atrophy associated with AMD in OCT scans. Med Image Anal 2021;72:102130.
    19 Wan C, Li H, Cao GF, Jiang Q, Yang WH. An artificial intelligent risk classification method of high myopia based on fundus images. J Clin Med 2021;10(19):4488.
    20 Kessel K, Mattila J, Linder N, Kivelä T, Lundin J. Deep learning algorithms for corneal amyloid deposition quantitation in familial amyloidosis. Ocul Oncol Pathol 2020;6(1):58-65.
    21 Xu J, Shen J, Wan C, Jiang Q, Yan Z, Yang W. A few-shot learning-based retinal vessel segmentation method for assisting in the central serous chorioretinopathy laser surgery. Front Med 2022;9:821565.
    22 Mursch-Edlmayr AS, Ng WS, Diniz-Filho A, Sousa DC, Arnold L, Schlenker MB, Duenas-Angeles K, Keane PA, Crowston JG, Jayaram H. Artificial intelligence algorithms to diagnose glaucoma and detect glaucoma progression: translation to clinical practice. Transl Vis Sci Technol 2020;9(2):55.
    23 Zheng C, Johnson TV, Garg A, Boland MV. Artificial intelligence in glaucoma. Curr Opin Ophthalmol 2019;30(2):97-103.
    24 Park SJ, Lee EJ, Kim SI, Kong SH, Jeong CW, Kim HS. Clinical desire for an artificial intelligence-based surgical assistant system: electronic survey-based study. JMIR Med Inform 2020;8(5):e17647.
    25 Agarwal A, Baskaran S, Panner Selvam MK, Barbăroșie C, Master K. Unraveling the footsteps ofsaoka R. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep 2018;8(1):14665.
    46 Acharya UR, Dua S, Du X, Sree SV, Chua CK. Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans Inf Technol Biomed 2011;15(3):449-455.
    47 Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014). Expert Opin Biol Ther 2014;14(9):1295-1317.
    48 Shen Z, Hu J, Wu H, Chen Z, Wu W, Lin J, Xu Z, Kong J, Lin T. Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study. J Transl Med 2022;20(1):409.
    49 Zhao J, Lu Y, Qian Y, Luo Y, Yang W. Emerging trends and research foci in artificial intelligence for retinal diseases: bibliometric and visualization study. J Med Internet Res 2022;24(6):e37532.
    50 Giardini ME, Livingstone IAT. Extending the reach and task-shifting ophthalmology diagnostics through remote visualisation. Adv Exp Med Biol 2020;1260:161-174.
    51 Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014;311(18):1901-1911.
    52 Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004;363(9422):1711-1720.
    53 Weinreb RN. Ocular blood flow in glaucoma. Can J Ophthalmol 2008;43(3):281-283.
    54 Christopher M, Bowd C, Belghith A, Goldbaum MH, Weinreb RN, Fazio MA, Girkin CA, Liebmann JM, Zangwill LM. Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head en face images and retinal nerve fiber layer thickness maps. Ophthalmology 20′0;127(3):346-356.
    55 Cheng J, Liu J, Xu Y, Yin F, Wong DW, Tan NM, Tao D, Cheng C, Aung T, Wong TY. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 2013;32(6):1019-1032.
    56 Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology 2016;123(9):1974-1980.
    57 Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X. Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging 2018;37(11):2493-2501.
    58 Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90(3):262-267.
    59 Raghavendra U, Bhandary SV, Gudigar A, Acharya UR. Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images. Biocybern Biomed Eng 2018;38(1):170-180.
    60 Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P. Automated detection of Glaucoma using deep learning convolution network (G-net). Multimed Tools Appl 2020;79(21):15531-15553.
    61 Singh LK, Pooja, Garg H, Khanna M. Deep learning system applicability for rapid glaucoma prediction from fundus images across various data sets. Evol Syst 2022;13(6):807-836.
    62 Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120(10):1268-1279.
    63 Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6):701-713; discussion 829-830.
    64 Medeiros FA. Biomarkers and surrogate endpoints in glaucoma clinical trials. Br J Ophthalmol 2015;99(5):599-603.
    65 Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med 2019;25(1):24-29.
    66 Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221-248.
    67 Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25(1):44-56.
    68 Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019;380(14):1347-1358.
    69 Li S, Zhao R, Zou H. Artificial intelligence for diabetic retinopathy. Chin Med J (Engl) 2021;135(3):253-260.
    70 Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 2019;103(2):167-175.
    71 Wu Z, Chen J, Li Y, Deng Y, Zhao H, Hsieh CY, Hou T. From black boxes to actionable insights: a perspective on explainable artificial intelligence for scientific discovery. J Chem Inf Model 2023;63(24):7617-7627.
    72 Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 2019;1(5):206-215.
    73 Salih A, Boscolo Galazzo I, Gkontra P, Lee AM, Lekadir K, Raisi-Estabragh Z, Petersen SE. Explainable artificial intelligence and cardiac imaging: toward more interpretable models. Circ Cardiovasc Imaging 2023;16(4):e014519.
    74 Ahuja AS, Halperin LS. Understanding the advent of artificial intelligence in ophthalmology. J Curr Ophthalmol 2019;31(2):115-117.
    75 Ma D, Yang B, Guan B, Song L, Liu Q, Fan Y, Zhao L, Wang T, Zhang Z, Gao Z, Li S, Xu H. A bibliometric analysis of pyroptosis from 2001 to 2021. Front Immunol 2021;12:731933.
    Cited by
Get Citation

Chun Liu, Lu-Yao Wang, Ke-Yu Zhu,/et al.Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in glaucoma from 2013 to 2022. Int J Ophthalmol, 2024,17(9):1731-1742

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
Publication History
  • Received:November 10,2023
  • Revised:May 24,2024
  • Online: August 20,2024