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Abstract
● Adaptive optics scanning laser ophthalmoscopy (AO-
SLO) has been a promising technique in funds imaging 
with growing popularity. This review firstly gives a brief 
history of adaptive optics (AO) and AO-SLO. Then it 
compares AO-SLO with conventional imaging methods 
(fundus fluorescein angiography, fundus autofluorescence, 
indocyanine green angiography and optical coherence 
tomography) and other AO techniques (adaptive optics 
flood-illumination ophthalmoscopy and adaptive optics 
optical coherence tomography). Furthermore, an update 
of current research situation in AO-SLO is made based on 
different fundus structures as photoreceptors (cones and 
rods), fundus vessels, retinal pigment epithelium layer, 
retinal nerve fiber layer, ganglion cell layer and lamina 
cribrosa. Finally, this review indicates possible research 
directions of AO-SLO in future. 
● KEYWORDS: adaptive optics; scanning laser ophthalmoscopy; 
retina; fundus imaging 
DOI:10.18240/ijo.2017.11.18

Citation: Zhang B, Li N, Kang J, He Y, Chen XM. Adaptive optics 
scanning laser ophthalmoscopy in fundus imaging, a review and 
update. Int J Ophthalmol  2017;10(11):1751-1758

INTRODUCTION

A daptive Optics, From Starry Sky to Eye  Adaptive 
optics (AO) is defined as a discipline to improve the 

performance of an optical system by reducing the effect of 
wavefront distortions[1]. Wavefront of light is a imaginary 
surface representing its propagating direction[2]; just like 
water wave, distortion of wavefront can indicate environment 
information. The modern AO originated from astronomy in 

1950s, when Babcock[3] put forward wavefront information 
could be used to adjust atmosphere turbulence. This hypothesis 
was realized in 1977[4] and within another two decades, 
10-meter class AO telescopes achieved a precision near 
diffraction limit[5]. 
The human eye is also an optical system, in which the 
counterpart of atmosphere turbulence is wavefront aberration. 
Aberration is the difference between reference wavefront 
and the actual wavefront for every point over the pupil[2]. 
In 19th century, Helmholtz described the human eye as an 
imperfect optic system, the main reason was the existence of 
aberration[6]. Aberration of the eye can be described by Zernike 
polynomials[7], the 2nd order components of which are defocus 
and astigmatism[8]; the higher order components can also 
pose an influence on the eye. The ocular aberration limits the 
resolution of non-AO equipment, such as the scanning laser 
ophthalmoscopy (SLO) without AO technique.
After its success in astronomy, researchers had tried to 
apply AO technique in ophthalmology. In 1989, wavefront 
corrector (an active optical focusing unit at that time) was 
firstly introduced into fundus imaging, with a considerable 
improvement on the resolution of SLO[9]. In 1990s, after the 
great successful introduction of Hartman-Shack wavefront 
sensor[10] and the deformable mirror in ophthalmology, it was 
available to perform single-cellular imaging noninvasively in 
vivo of cone cells[11] with AO flood-illumination ophthalmoscopy 
(AO-FIO). In 2002, the first AO-SLO was available by 
introducing AO technique into SLO, which had a higher axial 
and transverse resolution and better contrast comparing with 
AO-FIO[12]. 
Now, many published literatures on AO fundus imaging are 
done with AO-SLO. This review and update will focus on 
AO-SLO with the last part to indicate some future research 
directions. 
A COMPARISON OF AO-SLO WITH OTHER FUNDUS 
IMAGING METHODS
AO-SLO Versus Conventional Fundus Imaging Methods  
Fundus fluorescein angiography (FFA), indocyanine green 
angiography (ICGA), optical coherence tomography (OCT) 
and fundus autofluorescence (FAF) are now widely used 
methods in fundus imaging. A comparison of these 
methods with AO-SLO is shown in Table 1[13-17]. The main 
advantage of AO-SLO over the conventional ones is a higher 
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transverse resolution without invasion, which has furthered 
our observation of retina. An example of multimodal fundus 
imaging of the same eye with diabetic retinopathy (DR) by 
FFA, OCT and AO-SLO is given in Figure 1[20]. 
Characteristics of Different Adaptive Optics Equipment  
Now three AO fundus imaging methods in research are AO-
FIO, AO-OCT and AO-SLO. With AO, all of them can achieve 
a high transverse resolution; the characteristics of them are as 
following: 
AO-FIO  AO-FIO was invented earlier than AO-SLO and AO-
OCT, and is also the only equipment available on market now 
(rtx1, Imagine Eyes)[21]. AO-FIO is able to observe structures 
like capillaries and the outer segment of cones[21]; the imaging 
time of one frame is short with good quality. Moreover, the 
cost to build an AO-FIO system is usually lower than AO-

SLO and AO-OCT as the structure is less complex. However, 
the axial resolution of AO-FIO is low (about 300 μm) and the 
observation in axial direction is usually limited.
AO-OCT  As a combination of AO and OCT technique, AO-
OCT has a high resolution both transversely and axially, which 
enables 3D cellular imaging; AO-OCT may play an important 
role in fundus functional imaging in the future with this 
advantage[22]. The main limitation of AO-OCT is its inability 
to detect fluorescent signals, which restricts the imaging of a 
specific fundus structure[22]. Another limitation of AO-OCT is 
the slow speed of 3D imaging[23], which may reduce imaging 
quality with eye movement.
AO-SLO  Comparing with AO-OCT, the axial resolution of 
AO-SLO is lower (about 5 μm versus about 100 μm[24]). AO-
SLO can detect fluorescent signals, which enables imaging 

Table 1 A comparison of AO-SLO with FAF, FFA, ICGA and OCT

Methods Invasive
aTransverse 
resolution

1,aField 
angle

First time 
available Applications

AO-SLO 2N 2.5 μm 1.5° 2002[12] Observing cones, rods, vessel and capillary, nerve fiber layer etc (Table 2). 

FAF N 20 μm 50° 31970s[13] Retinal pseudodrusen, macular edema, choroidal neovascularis[14] 
choroquine and hydroxychloroquine retinopathy[15] etc.

FFA Y 20 μm 50° 1960[16] Fundus neovascularization, aneurysms, tumor, telangiectasis, edema, 
vitreous inflammation[14] etc.

ICGA Y 20 μm 50° 1970 in eye[17] Choroidal vasculopathy, exudative AMD, inflammation and tumors, 
central serous chorioretinopathy[15] etc.

OCT N 420 μm 45° 1991[18]
5Vitreoretinal interface disorders, central serous chorioretinopathy, AMD, 
diabetic retinopathy[15] etc.

1Pupil diameter at about 6 mm; 2AO-SLO fluorescein angiography not included; 3Fundus autofluorescence was reported around 1870s[19], but it 
was not explored for clinical use until 1970s; 4Axial resolution is about 5 μm; 5AO-OCT and angio-OCT not included; aThe approximate data. 

Figure 1 Multimodal imaging of a patient’s right eye with diabetic retinopathy  A: Fundus image with location of AO-SLO montage (box); 
B: Fundus fluorescein angiography (FFA); C: Enlarged 1˚×1˚ AO-SLO image from F; D: Enlarged FFA from B; E: Spectral-domain OCT (SD-
OCT) registered to A; F: AO-SLO montage stitched from 2˚×2˚ images with location of SD-OCT (line) and AO-SLO inset (box). This figure is 
from reference[20] under the permission of cc BY 4.0. 
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methods like AO-SLO fluorescein angiography (AO-SLO FA). 
Another advantage of AO-SLO is its high recording speed of 
single frame (about 30 frame per second; FPS)[25]. 
RESEARCH OF AO-SLO IN OPHTHALMOLOGY
Imaging Methods  Besides the confocol photographing model, 
many new imaging methods spring up in AO-SLO research, 
which makes more structures available to be observed and 
more parameters to be measured.
Fluorescent imaging methods  With an ability to detect 
fluorescence of SLO, AO-SLO fluorescent imaging methods 
developed. FFA is a frequently used diagnostic technique 
in fundus vascular diseases, however, the morphologic 
information from FFA is incomplete in observing structures 
like the capillary network[26]. With a higher resolution than 
FFA, AO-SLO FA can afford more detailed information. 
Similarly, AO-SLO autofluorescence (AO-SLO AF) and 
AO-SLO indocyanine green (AO-ICG), as a combination of 
AO-SLO with AF and ICG imaging respectively, have been 
applied in photographing fundus structure like retinal pigment 
epithelium (RPE)[27-28]. Another imaging method, two-photon 
fluorescence AO-SLO (TPF AO-SLO) is able to image a wide 
variety of structural details in animals, such as ganglion cells, 
Müller cell processes of the Macaca rhesus[29]. However, with 
an uncertain safety as using near-infrared exciting light[29-31], no 
research in humans has been published up to now.  
Non-confocol imaging method  In split detector AO-SLO, 
a reflective mask is placed to reflect the confocal signal to a 

first detector and transmit the multi-scattered light to another 
two incoherent detectors, thus the confocal signals and the 
split-detector signals (calculated from non-confocal detectors) 
can be recorded simultaneously, with a perfect spatial 
registration[32]. The split detector AO-SLO has been applied in 
imaging of retinal structure like cones and rods in patients and 
healthy controls[33]. Using offset pinhole is another method in 
nonconfocal imaging, which can get structural and perfusion 
images noninvasively similar to those by AO-SLO FA[34]. With 
multi-offset pinhole, single neurons in the retinal ganglion cell 
layer (GCL) are able to be imaged[31], which is of significant 
difficulty and has only been imaged in animals with TPF AO-
SLO before.
Photoreceptors  In 1997, adaptive optics (an AO-FIO) was 
first successfully[11] applied in ophthalmology to observe cones. 
AO-SLO has been used in research of photoreceptors for 
over a decade, in a wide variety of diseases (Table 2). Several 
parameters of photoreceptor mosaic are studied as following:
Density and distribution  Most studies are focused on cones, 
as imaging of rods is proved to be more difficult[35]. The density of 
cones is reported to decrease from fovea (about 164 000/mm2) to 
periphery retina (about 6700/mm2 NR and 5400/mm2 TR at 
30°), while density of rods reaches a peak at about 25°NR 
(about 124 000/mm2) and 20°TR (about 120 000/mm2)[35]. 
Alteration to photoreceptors has been observed in many 
different diseases (Table 2)[27-80].

Table 2  AO-SLO in fundus imaging

Fundus structures 1Participants
RNFL Normal[47]; Glaucoma[49] 

Ganglion cell layer Normal[31] (multi-offset imaging)

Cones Normal (density)[35,52-53]; RP[33b,54]; Achromatopsia[55]; Stargardt’s disease[56]; APMPPE[57]; Laser maculopathy[58]; 
DR[36]; AMD[59]; CSC[60]; ERM[61]; AZOOR[62]; Usher syndrome[33]b; AIR[63]; NARP[64]; Pseudodrusen[65]; 
Type 2 Mac Tel[66]

Rods Normal[67] (density[35] reflectance[68]); RP[33]b; Achromatopsia[55]; Stargardt’s[56]; Usher syndrome[33]b

RPE Normal[27c-28]; AMD[51]c

Lamina cribrosa Normal[48]; Glaucoma[50]

Fundus vessel research 
Thickness and ratio Arteriole wall thickness[40-41]; Wall to lumen ratio[69]

Blood cells 2Velocity of leukocyte[70-71]; Velocity[42] and aggregation[72] of RBC
Parafoveal network Microvascular density[43]; Foveal avascular zone[44-45]; Network and vascular perfusion condition[34,43]a; 

Hemodynamics[73-74]; Oxygen saturation[75]

Diseases Type 2 diabetes[76]; DR[74,77-78]; Hypertension[41,69]; MA[46]a; CRVO[79]; Choroideremia (Choroidal vessels)[80]

AIR: Autoimmune retinopathy; AMD: Age-related macular degeneration; APMPPE: Acute posterior multifocal placoid pigment epitheliopathy; 
AZOOR: Acute zonal occult outer retinopathy; BVMD: Best vitelliform macular dystrophy; CRVO: Central retinal vein occlusion; CSC: Central 
serous chorioretinopathy; DR: Diabetic retinopathy; ERM: Epiretinal membrane; MA: Microaneurysms; Mac Tel: Macular telangiectasia; 
NARP: Neurogenic weakness, ataxia and retinitis pigmentosa syndrome; RBC: Red blood cell; RNFL: Retinal nerve fiber layer; RP: Retinitis 
pigmentosa; RPE: Retinal pigment epithelium1. 1For research compared patients with healthy controls, only the diseases listed. Special imaging 
methods: aAO-SLO fluorescein angiography (AO-SLO FA); bSplit-detector AO-SLO; cAO enhanced indocyanine green ophthalmoscopy (AO-
ICG). 2Uji et al[71] suggested the moving transparent particles may be leukocytes or plasma gaps.
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Reflectance  As wave-guiding cells, change to reflectance of 
the photoreceptors is observed in different diseases, such as the 
dark patches in diabetic retinopathy (DR) patients[36]. However, 
as the reflectance of photoreceptors in normal people can 
also be low, it should be careful to evaluate reflectance as an 
indicator of funds diseases[37-38].
Descriptive metrics of mosaic  Besides density, many other 
metrics have been introduced to describe the photoreceptor 
mosaic statistically, which may be helpful in auto-analysis of 
mosaic pattern in the future, such as the spacing metrics like 
nearest neighbor distance and regularity metrics like nearest 
neighbor regularity[39]. The regularity metrics are proved to 
be more sensitive in tracking changes of mosaic like diffuse 
loss[39].
Fundus Vessels  AO-SLO is able to image fine vessel 
structures like the capillary and the arteriole wall, and to detect 
fluoscence with a compatibility with FA, AF and ICG imaging. 
AO-SLO has been applied in research of different vessel 
parameters like arteriole thickness[40-41], velocity of blood cells 
in capillary[42], parafoveal capillary density[43] and area of foveal 
avascular zone[44-45]. AO-SLO can also reveal structural details 
which are difficult to be observed with conventional methods, 
such as the microscopic features of retinal microaneurysms[46].
Other Structures
Ganglion cell body, retinal nerve fibre layer and lamina 
cribrosa  All these three structures may play a role in glaucoma 
study and have been successfully imaged in human 
noninvasively[31,47-48]. AO-SLO can reveal normal and abnormal 
retinal nerve bundles in glaucoma patients[49]. AO-SLO can 
also reveal pores of lamina cribrosa; comparing with normal 
participants, the mean area in glaucoma patients is significantly 
larger[50].
Retinal pigment epithelium  RPE can be revealed by AO-
ICG and AO-SLO AF[27]. Reflectance imaging of RPE cells 
with AO-SLO in normal fundus is difficult as the wave-guiding 
nature of overlying photoreceptors obscures signals from 
RPE[28]. Imaging of RPE cells with AO-ICG is based on that 
they can take up injected ICG dye, which can be detected by 
AO-SLO[27]. AO-SLO AF is able to image RPE mosaic in vivo 
because it can detect autofluorescence from lipofuscin in RPE 
cells[28]. In age-related macular degeneration (AMD) patients, 
research indicates RPE cell morphologies by AO-SLO AF 
are markedly similar to those seen in postmortem histological 
studies[51].
FUTURE RESEARCH DIRECTION  
Possible research direction of AO-SLO may exist in the 
following fields: 
Imaging  Although AO-SLO has a high transverse resolution 
to detect single photoreceptors and capillaries, its field angle 
at one scan is small, or a corresponding retinal area of about 
0.085 to 0.34 mm2[81], thus it’s sometimes difficult to image the 

whole area of interest. One method to get an image of larger 
area is by mosaicking multiple images, which could expand 
the field angle to over 20°[82]. Another efficient but difficult 
method is to increase field angle at one scan. Dual-conjugate 
adaptive optics technique may be one such method, which may 
increase the field angle to about 7°×7° in one scan[83].
In axial direction, with development of imaging techniques 
especially non-confocal ones (split detection, offset pinhole, 
etc), more fundus structures can be observed with AO-SLO, 
such as ganglion cell body[31] etc. In the near future, structures 
like choroidal capillaries may be imaged noninvasively.
Eye movement will bring intraframe distortion which affects 
the imaging quality of AO-SLO, especially in less cooperative 
patients. Even in eye fixed on a target, there is continuous 
eye movement[25]. A higher scanning speed or movement 
compensation may be helpful to achieve a better imaging 
quality. Lu et al[25] has succeeded to reduce distortion by 50.9% 
to 79.7% with high imaging speed at 200 FPS.
Automatic algorithms  Processing images from AO-SLO can 
be time consuming and expert-depended, with requirement 
of knowledge on both image processing and medicine, which 
forms a barrier to promote this technique. Therefore some 
algorithms have been developed for AO-SLO, in automated 
reference frame selection[84], multiple-images montaging[81] and 
quantitative analysis of the photoreceptors[53,85]. However, as 
far as we know, there is no fully-automatic software available 
now for the whole procedure from imaging to outputting 
analytic result, which should be user-friendly and no need of 
coding.
Clinical practice  Available firstly in 1991[18], OCT was soon 
applied in research of fundus diseases[86-87]. OCT got popular 
in hospital after entering market in 1996 and its success is 
dependent on the development of OCT-guided clinical practice. 
OCT guided diagnosis[88], therapy decision[89] and follow-up[90] 
has been a daily part of clinic ophthalmology.
Like OCT, AO-SLO is a non-invasive examination. Development 
of AO-SLO guided clinical practice will improve our 
understanding and management of ocular diseases and promote 
this technique concurrently. Future research may focus on 
the following aspects: 1) Diagnosis. AO-SLO can detect 
microstructural alterations, such as microvascular damage 
and morphologic changes of photoreceptors before appearing 
clinical symptoms, which may be applied in early diagnosis 
and prevention. In type 2 diabetes without sign of DR, AO-
SLO can detect changes of parafoveal capillary network[76]. 
In patients with retinitis pigmentosa or Usher syndrome, it’s 
reported the visual acuity could be kept in normal range with 
over 35% fall of cone density[33]. AO-SLO may detect some 
pathological alterations not seen in OCT[91]. One problem in 
diagnosis with AO-SLO is lack of reliable reference value, 
such as the density of photoreceptors, nearly all published 
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studies are with small sample and without a consideration 
of factors like age, gender and ethnicity[35,52-53]. 2) Treatment 
evaluation. There are not many published studies to explore 
AO-SLO in estimating ocular treatment. In autoimmune 
retinopathy patients, AO-SLO was used to evaluate the density 
of cones after taking rituximab, which was stable during the 
period of treatment (but no control group in this study)[63]. 
Actually, AO-SLO has great potential to assist clinical therapy 
and one example is gene therapy of monogenetic retinopathy. 
In retinal degeneration characterized by cones or rods 
dysfunction, AO-SLO can be applied to monitor morphologic 
improvements of photoreceptors. AO-SLO endpoints may 
play a role as structural marker in clinical trial and practice. 3) 
Follow-up. With a high transverse resolution, AO-SLO guided 
follow-up may help us understand the structural and functional 
alterations in ocular diseases. AO-SLO has been reported to 
follow the longitudinal changes of photoreceptors (AZOOR[62]) 
and microvessels (DR[78]). More follow-up studies of one or 
multiple structures may appear in the near future.
Basic medicine research  Combining with fluorescent label, 
the distribution of a certain protein in retina could be detected 
with AO-SLO in animals[92], which makes it possible to study 
a particular fundus structure or cell type in vivo. AO-SLO 
may also be applied to research fundus physiology, especially 
in photoreceptors[93] and fundus vessels[94], with a transverse 
resolution of micron dimension and the convenience to record 
a video. AO-SLO may help us understand the mechanism of 
glaucoma better as it can image retinal microvessles, RNFL, 
GCL and lamina cribrosa in vivo noninvasively[31,47-48].
CONCLUSION
With increasing studies and publications, AO-SLO has been a 
promising technique. AO-SLO has played an important role in 
observing microstructures of living human retina with growing 
popularity. Development of imaging method and progress in 
clinical application will be made in the coming years, with 
innovation and cooperation of multiple disciplines from 
physics to medicine. However, there is still much research 
work to pave the road for clinical practice of AO-SLO. Thus 
more high-quality studies are expected on imaging, algorithms 
and clinical applications in future.
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