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Abstract
● The methylation of DNA is a prevalent epigenetic 
modification that plays a crucial role in the pathological 
progression of ocular diseases. DNA methylation can 
regulate gene expression, thereby affecting cell function 
and signal transduction. Ophthalmic diseases are a kind of 
complex diseases, and their pathogenesis involves many 
factors such as genetic, environmental and individual 
differences. In addition, inflammation, oxidative stress 
and lipid metabolism, which abnormal DNA methylation 
is closely related to, are also considered to be major 
factors in eye diseases. The current understanding of DNA 
methylation in eye diseases is becoming more complex 
and comprehensive. In addition to the simple suppression 
of gene expression by hypermethylation, factors such as 
hypomethylation or demethylation, DNA methylation in 
non-promoter regions, interactions with other epigenetic 
modifications, and dynamic changes in DNA methylation 
must also be considered. Interestingly, although some 
genes are at abnormal methylation levels, their expression 
is not significantly changed, which indirectly reflects 
the complexity of gene regulation. This review aims to 

summarize and compare some relevant studies, and 
provide with new ideas and methods for the prevention and 
treatment of different eye diseases, such as glaucoma, 
retinoblastoma, and diabetic retinopathy. 
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INTRODUCTION

V arious epigenetic phenomena have been identified, 
such as RNA methylation[1], histone modification[2], 

genetic imprinting[3], X-chromosome inactivation[4], and 
transposon recruitment[5]. However, DNA methylation is the 
most predominant form of storing epigenetic information 
and is considered to be the core of epigenetic inheritance[6]. 
Endogenous factors like DNA methyltransferase[7] and some 
exogenous factors can introduce methyl groups into DNA 
molecules[8-12]. In mammals and humans, DNA methylation has 
been closely linked to many biological phenomena, including 
aging[13-15], tumorigenesis[16-19], and death[20-22]. Cytosine-
phosphate-guanine (CpG) dinucleotide cytosine methylation 
is the most common form of DNA methylation in the human 
body. It can alter genetic expression without modifying the 
DNA sequence and is one of the most important mechanisms 
of epigenetic regulation[23]. Recent studies in ophthalmology 
have demonstrated that abnormal DNA methylation can lead 
to aberrant expression of key genes[24-25], contributing to the 
onset and development of various ophthalmic diseases such 
as corneal and conjunctival diseases, glaucoma, cataract, 
retinal diseases, and ocular tumors. For example, abnormal 
DNA methylation disrupts the balance between proliferation 
and differentiation of corneal epithelial cells in corneal and 
conjunctival diseases, affecting corneal transparency and 
homeostasis[26-27]. Similarly, abnormal DNA methylation in 
glaucoma patients impacts the expression of genes involved 
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in intraocular pressure (IOP) regulation[28], thereby affecting 
aqueous humor flow and IOP control. Furthermore, aberrant 
DNA methylation state of lens epithelial cell is associated with 
cataract development which impairs lens transparency and 
function[29-30]. Abnormal DNA methylation also interferes with 
retinal cell function and signal transduction pathways leading 
to visual dysfunction in retinal diseases by affecting light 
perception and transmission within the retina[31-32]. Additionally, 
abnormal levels of DNA methylation are closely related to the 
occurrence and progression of ocular tumors as they influence 
tumor suppressor gene expression as well as oncogenes 
impacting tumor cell proliferation apoptosis, and metastasis[33]. 
Overall, the role played by aberrant DNA methylation cannot 
be overlooked when considering ophthalmic diseases. The 
objective of this review is to elucidate the mechanisms 
underlying DNA methylation in various ophthalmic diseases, 
thereby providing novel insights for the development of 
relevant therapeutic strategies and offering more precise and 
effective treatment targets.
REVIEW OF DNA METHYLATION
DNA Methylation  DNA methylation is a form of chemical 
modification in which methyl groups are selectively added to 
a DNA molecule through covalent bonding in the presence of 
DNA methyltransferase[34].
Structure  DNA methylation modifications can occur at sites 
such as the C5 position of cytosine (5mC), the N6 position of 
adenine (6mA), and the N4 position of basal cytosine (4mC)[35-37]. 
The term “DNA methylation” in general studies mainly refers 
to the process of methylation that occurs at the 5th carbon atom 
on cytosine in CpG dinucleotides, resulting in a product called 
5-methylcytosine (5mC)[38-39]. Different DNA methylation 
enzymes catalyze various methylations[40-41].
Location in the Genome  DNA methylation is a crucial 
epigenetic modification that typically occurs at CpG sites 
within the genome, which are base pairs formed by cytosine 
(C) and guanine (G) in the DNA strand[42]. These CpG sites 
are widely distributed throughout the genome but tend to 
cluster together in CpG islands, regions with a high density 
of aggregated CpG sites located near the promoter region of 
a gene. The presence of CpG islands significantly impacts 
gene regulation and expression because DNA methylation 
within the gene’s promoter region can impede transcription 
factor binding, thereby interfering with the formation of 
the transcription initiation complex and leading to gene 
silencing[43-44]. In addition to densely clustered regions in CpG 
islands, there are also scattered distributions of CpG sites 
across the genome. These scattered CpG sites may play a role 
in regulating individual genes’ expression or specific gene 
regions’ methylation status. Furthermore, apart from CpG sites, 
DNA methylation may occasionally occur at non-CpG sites; 

however, this non-canonical form of methylation is relatively 
rare in mammals[45-46]. This non-CpG methylated form might 
have essential functions in certain cell types and specific 
physiological states[47]; nevertheless, its precise functions and 
regulatory mechanisms remain incompletely understood.
Mechanisms of DNA Methylation  The methylation 
pattern of DNA is achieved through the action of DNA 
methyltransferases.
DNA methylation enzymes: two classes  The first type 
is maintenance DNA methyltransferase (DNMT1)[48-50], 
while the second type includes ab initio methylases such as 
DNMT3A[51-52], DNMT3B[53-54], and DNMT3L[55-56]. During 
DNA methylation, cytosine protrudes from the DNA double 
helix into a cleft that can bind to the enzyme. Cytosine 
methyltransferase catalyzes the transfer of an active methyl 
group from S-monoadenosylmethionine to the cytosine 
5-position, resulting in the formation of 5-methylcytosine.
DNA methylation reactions: two types  Ab initio methylation 
refers to the methylation modification of non-methylated 
DNA, which mainly occurs in the early stage of embryonic 
development and is used to establish the methylation status 
of cells in the early embryo[57-58]. Retention of methylation 
occurs after each replication of methylated DNA. The 
nascent DNA strand is initially in a non-methylated state due 
to semi-conserved replication. At this point, specific DNA 
methyltransferases utilize the semimethylated DNA as a 
template for methylation modification of the non-methylated 
DNA strand, ensuring that the replicated DNA double strand 
maintains the methylated state inherited from parental DNA[59-60]. 
Without methyltransferase activity, passive demethylation 
occurs after multiple rounds of replication[61]. Figure 1 provides 
a brief summary of DNA methylation content.
DNA DEMETHYLATION
Normally, the CpG island region near the promoter is not 
methylated, and methylation in the gene promoter region can 
lead to transcriptional silence. The methylation process is 
reversible, and demethylation usually means reactivation of 
gene expression[62-63]. DNA demethylation is mainly divided 
into active demethylation[64-65] and passive demethylation[66-67]. 
Active demethylation refers to the direct removal of methyl 
groups from DNA through the action of enzymes. Passive 
demethylation, on the other hand, refers to the loss of DNMT 
activity, which results in incorrect copying and delivery of 
methyl groups to the newly synthesized DNA strand. Known 
DNMT inhibitors can be classified into two categories: 
nucleoside analogs and non-nucleoside analogs[68]. Nucleoside 
analogs have different modifications on the cytosine ring that 
block methylation by binding to newly synthesized DNA; 
they are essentially cytosine analogs. Interestingly, DNMT 
inhibitors may cause proteasomal degradation of the target 
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enzyme (at least in the case of DNMT1). Nucleoside analog 
inhibitors include azacitidine[69], decitabine[70], foldobarbital[71], 
and fazarabine[72].
The risk of using nucleoside analogs as DNMT inhibitors 
is associated with their binding to DNA, which may result 
in toxicity and undesired side effects due to the potential 
formation of mutagenic damage[73]. Additionally, several 
compounds have been proposed as DNMT inhibitors, including 
SGI-110[74], RG108[75], hydralazine[76], procaine[77], among 
others. Another strategy involves the development of antisense 
oligonucleotides that can inhibit DNMT at the translational 
level[78]. MG98[79] represents this class of inhibitors, and its 
ability to suppress DNA methylation of tumor suppressor 
genes has been investigated in preclinical studies and clinical 
phase I/II trials. Table 1[69-71,77,79-80] provides a summary of 
relevant DNA demethylation drugs.
Abnormal DNA Methylation Modifications and Ocular 
Membrane-Related Diseases (Table 2)
DNA methylation modifications and Fuchs endothelial 
corneal dystrophy  Fuchs endothelial corneal dystrophy 
(FECD) is a common chronic progressive corneal disease[81-82]. 

The disease primarily affects the corneal endothelial cells[83], 
which are located in the inner layers of the cornea[84] and play 
an important role in maintaining corneal clarity and preventing 
edema[85-86]. In patients with FECD, the progressive loss 
and dysfunction of corneal endothelial cells lead to severe 
impairment of vision[87]. The characteristic pathological change 
in FECD is the accumulation of abnormal extracellular matrix 
(ECM)[88-89]. However, the molecular pathological mechanisms 
behind this disease are not fully understood.
Abnormal DNA methylation of miRNA genes has been found 
in corneal endothelial cells of FECD patients, which may 
result in altered expression levels of miRNAs. Specifically, 
altered methylation of the promoter region of the miR-199B 
gene leads to reduced expression levels of miR-199b-5p. 
Furthermore, it was discovered that miR-199b-5p negatively 
regulates two transcription factors, Snai1 and ZEB1, thereby 
increasing ECM deposition in FECD[90]. Hypermethylation 
of the promoter DNA region of the SLC4A11 gene in late-
onset FECD can silence the SLC4A11 gene and subsequently 
affect ion transport function, leading to corneal endothelial 
dysgenesis[91]. Additionally, sporadic changes in DNA 

Table 1 Inhibitors of DNMTs and their mechanisms 
Drug Mechanism of action Clinical application
Azacitidine[69] Replaces cytidine during DNA replication, forms a covalent bond with DNMT, 

and inhibits DNA cytosine methylation
Myelodysplastic syndromes, chronic myeloid leukemia, 

other cancers
Decitabine[70] Binds directly to DNA, inhibits DNMT, reduces DNA methylation, induces cell 

differentiation or apoptosis
Guadecitabine[71] Cytidine analog, inhibits DNA methylation, chemically stable, lower 

cytotoxicity, orally available
No approved clinical application yet

Arsenic Trioxide[80] It is cytotoxic to leukemia cells, promotes apoptosis and cell differentiation, 
and partially inhibits DNMT3A/B

Acute promyelocytic leukemia

Procaine[77] Inhibiting DNMT1 activity, it acts on CpG island regions Potential application in breast and liver cancer therapy

MG98[79] Reduces the expression of DNMT1 protein in tumor cells and exhibits synergy 
with other drugs

No approved clinical application yet

The table summarizes three nucleoside inhibitors, namely azacitidine, decitabine, and foldobarbital; two non-nucleoside inhibitors, arsenic 

trioxide and procaine; as well as the antisense nucleotide analog MG98. DNMT: DNA methyltransferase. DNMT1, DNMT3A, and DNMT3B are 

three major members of the DNA methyltransferase family.

Figure 1 DNA methylation modifications and mechanisms  A: Three methylation modifications, namely the N4 position of basal cytosine 

(4mC), C5 position of cytosine (5mC) , and the N6 position of adenine (6mA); B: Overall process of DNA methylation; C: Selective addition of 

methyl groups to a DNA molecule by DNA methyltransferases.
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methylation accumulate in fundamental biological processes 
within corneal endothelial cells, resulting in alterations to the 
expression and function of related genes. These genes are 
involved in important functions of corneal endothelial cells, 
such as cytoskeletal organization, ion transport, hematopoietic 
cell differentiation, and cellular metabolism. An amplification 
of cytosine-thymine-guanine repeats at the CTG18.1 locus in 
the TCF4 gene has been found in some diseases, leading to 
abnormalities in the TCF4 gene that may be one of the key 
factors in FECD pathogenesis[92-93].
Previous studies have focused on the role of hypermethylation 
in FECD, but aberrant DNA methylation is not directly linked 
to FECD. A recent study identified aberrant methylation at 
3488 CpG sites of the TCF4 gene in the corneal endothelium 
of patients with delayed-onset FECD. However, significant 
alterations in TCF4 gene expression were not found, and the 
study ruled out hypermethylation as a pathogenic disease 
mechanism[94].
DNA methylation modifications and uveitis  Methylation 
modifications regulate the production of cytokines and the 
modulation of the immune response in immune cells[95]. 
In uveitis, it was found that methylation changes occurred 
in specific genes Tbx21 and Rorc’s CpG sites, which 
were associated with cytokines produced by immune cells 
such as interferon (IFN)-γ and interleukin (IL)-17[96]. The 
overexpression of TET2 may lead to the downregulation of 
Notch1 methylation, activating the Notch1 signaling pathway 
and inducing differentiation of primitive CD4 T cells into the 
Th17 subpopulation. This disturbance in balance between 
Th17/Treg ratio can be observed in uveitis patients[97]. Th17 
cells primarily produce pro-inflammatory cytokines such as 
IL-17, which are involved in regulating immune responses and 
inflammatory reactions. On the other hand, Treg cells have 
immunosuppressive and immunomodulatory functions by 

producing inhibitory cytokines like IL-10 and tumor necrosis 
factor (TGF-β)[98]. Intraocular inflammation occurs when this 
balance is disrupted. These studies suggest that methylation 
plays a crucial role in regulating immune responses and the 
development of uveitis.
Additionally, the use of Zebularine, a DNA methylation 
inhibitor, made it possible to target CD4 T cells and inhibit 
the expression of IFN-γ and IL-17. This led to alleviation 
of intraocular inflammation and retinal tissue damage, 
demonstrating the potential of drugs that modulate methylation 
levels in uveitis treatment[99]. In summary, methylation plays 
an important role in immune cell development and uveitis. 
Modulating DNA methylation levels in immune cells may be a 
new strategy for treating uveitis.
DNA methylation modification and diabetic retinopathy  In 
diabetic patients, hyperglycemia damages the microvasculature 
of the retina[100] and leads to pathological changes in the 
microvasculature, such as increased vascular permeability[101], 
leakage[102], and neovascularization[103]. These abnormal 
vascular changes result in insufficient blood supply and 
hypoxia in the retina[104], which subsequently triggers damage, 
oxidative stress, and inflammatory responses in retinal 
tissues[105]. Simultaneously, the activity of DNA methylation 
enzymes (e.g., DNMT1) increases in hyperglycemic states, 
leading to elevated levels of DNA methylation[106]. This causes 
a series of changes including increased methylation of certain 
key genes that suppress their expression, such as DAAO[107], 
PPARα [108],  MEG3[109],  and Sirtuin1. Hyperglycemia 
accelerates Rac1 transcription through dynamic DNA 
methylation-hydroxymethylation of the Rac1 promoter, 
resulting in activation of the Rac1-Nox2 signaling pathway 
and mitochondrial damage. 
In addition, SPT, an enzyme that inhibits the de novo 
biosynthesis of sphingosine phospholipids, regulates 

Table 2 Studies on DNA methylation in ophthalmic diseases 
Disease Genes with DNA methylation modifications and their effects Insights
Fuchs endothelial corneal 
dystrophy

Abnormal methylation at 3488 CpG sites in the TCF4 gene, 
but no changes in the gene[94]

DNA methylation alone may have limited impact on gene 
regulation

Uveitis DNA methylation inhibitor Zebularine targeted CD4 T cells, 
suppressed IFN-γ and IL-17[96]

Modulating DNA methylation levels in immune cells may be a 
novel therapeutic strategy for uveitis

Diabetic retinopathy Base mismatches and high methylation of cytosine in 
mitochondrial DNA lead to damage[115]

Interventions targeting mitochondrial DNA and cytosine 
demethylation may be new strategies for treating diabetic retinopathy

AMD Hypomethylation of the IL17RC gene may be associated with 
AMD pathogenesis[128]

More replication studies are needed before considering clinical 
applications of epigenetic association studies for AMD pathogenesis

Choroidal melanoma Demethylation targeting tumor suppressor genes may inhibit 
tumor progression[131]

Combining targeted therapy and DNA methylation inhibitors may 
be a potential treatment for choroidal melanoma

RB High methylation of the RB1 gene promoter DNA detected in 
aqueous humor[139]

Aqueous humor RB1 gene promoter DNA methylation levels provide 
potential for early diagnosis and gene therapy for clinical RB

Glaucoma DNA methylation modulates genes related to intraocular 
pressure[141-142]

The connection between DNA methylation and gene mutations 
should be considered

Cataract Increased methylation levels of the αA-crystallin gene 
observed in cataract patients[153]

DNA methylation inhibitors may be a new strategy for treating 
eye diseases post-surgery

AMD: Age-related macular degeneration; RB: Retinoblastoma. This table summarizes selected studies on DNA methylation-related ophthalmic 

diseases that are mentioned in the full text and provides corresponding insights.
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the activation of methylation and hydroxymethylation 
mechanisms. This regulation prevents the increase in Rac1 
transcription, attenuates the activation of the Rac1-Nox2 
signaling pathway, and protects mitochondria from cytoplasmic 
reactive oxygen species (ROS) damage. Consequently, it 
prevents the loss of retinal capillary cells[110]. Findings suggest 
that in diabetic patients, hyperhomocysteinemia promotes 
the development of diabetic retinopathy by altering DNA 
methylation and hydroxymethylation. It also reduces TIMP1-
MMP-9 interaction while activating MMP-9 to promote 
apoptosis in capillary cells[111].
Furthermore, folic acid was found to affect the regulation of 
DNA methylation modification in diabetic retinopathy (DR) 
retinal microvascular cells in a hyperglycemic rat model[112]. 
Numerous studies have indeed confirmed the close relationship 
between mitochondrial damage and DNA methylation[113-114]. 
In addition to changes induced by methylation in certain genes 
leading to oxidative damage in mitochondria, mitochondrial 
damage in the retina during the development of DR may be 
attributed to base mismatches in mitochondrial DNA and 
hypermethylated cytosine. The regulation of DNA methylation 
or its deamination could potentially slow down the progression 
of diabetic retinopathy by preventing the formation of 
mitochondrial dysfunction[115], which provides an important 
rationale for developing new therapeutic strategies and drugs.
By interfering with DNA methylation and cytosine deaminase, 
we expect to improve the retinal condition of diabetic patients 
and reduce the risk and severity of diabetic retinopathy. 
This study also highlights the importance of the metabolic 
memory phenomenon[116] in DR, where interactions between 
DNA methylation and base mismatch persist even after 
termination of hyperglycemia, resulting in long-lasting effects 
on the further development of retinal damage. Therefore, 
by intervening in DNA methylation and cytosine deaminase 
processes, we anticipate enhancing the retinal condition of 
individuals with diabetes while decreasing their susceptibility 
to and severity of DR.
DNA methylation modifications and retinitis pigmentosa  
Retinitis pigmentosa (RP) is a group of neurodegenerative 
retinopathies that result in blindness due to progressive and 
irreversible death of photoreceptor cells[117]. Abnormalities in 
DNA methylation have been implicated in the pathogenesis of 
RP, as aberrant methylation states interfere with the development 
and function of photoreceptor cells, leading to RP[118-119].
Accumulation of ROS in retinal pigment epithelium, caused by 
damaged photoreceptor’s daily recycling, induces the oxidative 
DNA damage, a key regulator of microglial activation 
and photoreceptor degeneration, as well as mutations in 
endogenous antioxidant pathways involved in DNA repair, 
oxidative stress protection and activation of antioxidant 

enzymes (MUTYH, CERKL and GLO1 genes, respectively) [120].
The upregulation of the P2X7 receptor, causing pro-
inflammatory cytokines and ROS release by macrophages 
and microglia, contributing to neuroinflammatory and 
neurodegenerative progression[121]. It has been found that the 
alkylating agent methyl methanesulfonate (MMS) can induce 
DNA base damage by adding alkyl groups to DNA, which 
affects epigenetic modifications. Decitabine ameliorates retinal 
photoreceptor cell damage induced by MMS by targeting and 
inhibiting DNMT3A and DNMT3B[122].
DNA methylation modification and age-related macular 
degeneration  Age-related macular degeneration (AMD) 
is the leading cause of irreversible blindness in the elderly 
population worldwide[123]. Patients with AMD have reduced 
levels of DNA methylation in IL17RC, and promoter 
hypomethylation leads to increased expression of IL17RC 
proteins and mRNAs, suggesting that it may play a role in 
the pathogenesis of AMD[124]. The researchers used methods 
such as illumina human methylation450 bead arrays to detect 
DNA methylation of the IL17RC promoter. However, contrary 
to previous findings, some studies did not find evidence of 
differential methylation between AMD patients and age-
matched controls[125]. Therefore, the study concluded that 
hypomethylation of the IL17RC gene promoter in peripheral 
blood is not suitable as a clinical biomarker for AMD. This 
emphasizes the need for more replication studies for epigenetic 
association research, as well as consideration of factors such 
as dynamic changes in DNA methylation before proceeding to 
clinical applications. Meanwhile, there are some more well-
defined genes closely associated with AMD, such as ELOVL 
fatty acid elongase 2 (ELOVL2)[126-127]. The expression levels 
of the ELOVL2 gene in the retina of patients with AMD are 
significantly reduced. Impaired function of ELOVL2 interferes 
with lipid synthesis, leading to increased endoplasmic 
reticulum stress and mitochondrial dysfunction. This, in turn, 
results in a critical senescence phenotype at both cellular and 
physiological levels[128].
DNA Methylation Modifications and Ocular Tumors
DNA methylation modification and uveal melanoma  Uveal 
melanoma (UM) is the most common primary intraocular 
malignancy in adults, with an annual incidence ranging 
from 0.002‰ to 0.008‰. In terms of tumor treatment, 
demethylation, which regulates related genes, appears to be 
a potential way to inhibit tumor progression. Reactivation of 
E-cadherin protein expression through promoter demethylation 
may represent a potential therapeutic strategy for treating 
melanoma[129]. Inactivation of the p16INK4A gene is also 
caused by hypermethylation of its promoter region, which in 
turn affects the progression of UM[130]. However, it is crucial 
to focus on changes in certain oncogenes in the early stages of 
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cancer treatment for UM. While there may be a large number 
of genetic alterations throughout the entire cancer landscape 
and a strong link between hypermethylation levels and these 
genes, not all abnormalities in gene function resulting from 
dysregulated methylation will significantly affect tumors. 
Attention should be directed towards important mutated 
genes. Genes such as RASSF1A[131] and p16[132] are frequently 
hypermethylated in human cancers, serving as tumor 
suppressor genes. Hypermethylation of the RASSF1A promoter 
is also reflected in UM. Candidate genes and pathways 
correlated with metastasis development. For instance, BAP1 
methylation has been recognized as an important prognostic 
marker of UM metastasis[133], and several studies have 
highlighted that DNA methylation can be used to trace the 
tissue of origin of various tumors[134-135]. Jurmeister et al[136] 

highlighted that only UMs are characterized by a different 
global DNA methylation profile, with distinct epigenetic 
signatures. Thus DNA methylation analysis differentiate UMs 
from melanomas of other primary sites. Methylation patterns 
of primary tumors and metastases are different. Comparing 
the methylation status of metastatic primary UM and their 
corresponding metastases founded that in the latter case 
methylation events are likely random events or eventually 
patient specific[137].
DNA methylation modification and retinoblastoma  
CCCTC-binding factor (CTCF) plays an important role in 
maintaining the proper chromatin structure of tumor suppressor 
gene promoters. Its absence may lead to altered chromatin 
structure, dysregulation of transcription factor interactions, and 
an increase in DNA methylation. These changes subsequently 
affect the expression and normal regulation of the tumor 
suppressor gene Rb[138]. DNA methylation modifications are 
not only present in DNA within tumor tissues; RB1 promoter 
DNA hypermethylation was also detected in free cellular DNA 
in ocular atrial fluid, similar to that found in tumor tissues with 
retinoblastoma (RB)[139].
This suggests that introducing related genes into the atrial 
fluid to treat RB could be a possibility. By introducing the 
RB1 gene or related oncogenes, we can attempt to restore the 
function of tumor suppressor genes and chromatin structure, 
thereby inhibiting the proliferation and development of 
RB. Additionally, the level of DNA methylation in the RB1 
promoter in atrial fluid provides potential for early clinical 
diagnosis of RB.
DNA Methylation Modifications and Glaucoma  Glaucoma 
is one of the diseases with high rates of blindness worldwide, 
and recent studies have found that the incidence and 
inheritance pattern of the disease vary considerably across 
populations. Additionally, numerous genetic causative loci 
may exist[140]. Some genes closely related to glaucoma, such 

as MYOC[141-142] and CYP1B1[143-144], which may be affected 
by epigenetic regulation, have remained poorly studied. 
The current study identified some genes related to IOP that 
are affected by DNA methylation regulation. However, the 
available evidence suggests that there is not a direct link 
between glaucoma and IOP[145-146]. Instead, gene mutations 
have a more significant association with the pathogenesis of 
glaucoma. DNA methylation appears to play a more crucial 
role than expected in regulating gene mutations. On one hand, 
methylation causes gene silencing; on the other hand, gene 
mutations lead to changes in methylation. Methylation of DNA 
itself stabilizes its structure. This stabilization helps prevent 
mutations and damage to DNA sequences, maintaining the 
integrity of the genome.
DNA Methylation Modification and Cataracts  Cataract is 
a disease in which clouding occurs due to the degeneration 
of lens proteins and is mainly caused by aging, but it may 
also be caused by other factors such as genetics, trauma, 
and diabetes[147-148]. Oxidative stress is closely related to the 
development of age-related cataracts, and the OGG1 gene is 
an important DNA repair gene involved in repairing DNA 
damage caused by oxidative stress[149-150]. It was found that 
CpG islands in the first exon of OGG1 were hypermethylated 
in the lens cortex of senile cataract patients[151]. In addition, the 
GSTP1 promoter CpG island, which is an antioxidant, also 
showed a hypermethylated state[152]. Interestingly, one study 
found elevated methylation levels of the αA-crystallin gene 
in cataract patients after vitrectomy[153]. This suggests that 
DNA methylation is influenced not only by DNA methylation 
enzymes but also by external factors. Therefore, we need to 
consider a combination of surgical and environmental changes 
along with some methylation enzyme inhibitors to inhibit the 
progression of the disease.
DNA Methylation Modifications and Myopia  Myopia 
involves the influence of both genetic and environmental 
or behavioral factors, as well as their interactions[154]. It has 
been found that children with high myopia have significantly 
lower levels of DNA methylation in certain genes, including 
PCDHA10 and some genes previously associated with ocular 
phenotypes[155]. In contrast, other studies have indicated that 
DNA methylation levels of genes associated with eye axis 
length, such as COL1A1 and COL2A1[156-158], may be altered in 
myopic eyes. These alterations may impact the expression of 
these genes, leading to abnormal eye growth and myopia.
DISCUSSION
Although DNA methylation plays a crucial role in gene 
regulation, and abnormal methylation of certain genes has 
been associated with specific diseases, the mechanisms of gene 
regulation are highly complex. Abnormal methylation of some 
genes may impact their expression, but it is also possible that 
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they remain unaffected. In the study of ophthalmic diseases, 
it is not sufficient to solely identify genes with abnormal 
methylation as predictive indicators for diseases; extensive 
clinical research is still required to conduct large-scale studies 
on the methylation status of more genes in order to accurately 
assess disease risks and predict outcomes. Furthermore, 
investigating the methylation patterns of corresponding 
genes in different cells and tissues will contribute to a deeper 
understanding of their roles in ophthalmic diseases and drive 
the development of treatment strategies. Currently, treatment 
approaches targeting abnormal DNA methylation may involve 
utilizing methyltransferase inhibitors or demethylating agents 
to regulate gene expression. However, most related drugs are 
still under development and have not been widely implemented 
clinically. The causes behind aberrant levels of DNA 
methylation are multifactorial and not well understood; they 
may involve interactions between genetic factors, environment, 
lifestyle choices among others. Relying solely on these drugs 
for treatment may yield limited results. With advancements 
in technologies such as single-cell transcriptomics and 
epigenomics techniques, we can anticipate gaining a more 
comprehensive understanding of the mechanisms underlying 
methylation regulation in ophthalmic diseases. These research 
findings will establish a foundation for future developments 
towards more effective treatments and personalized medical 
approaches while providing vital support for improving 
patients’ quality of life with ophthalmic diseases.
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